
Approximate Likelihood Ratio Tests

Definition 1.1 For testing H0 : θ ∈ ω versus H1 : θ ∈ Θ − ω when Xi
iid∼ fX(x, θ), a test

which rejects for small values of

Λ∗ =
maxθ∈ω(L(θ))

maxθ∈Θ−ω(L(θ))
(1)

is a likelihood ratio test.

Rejecting for small Λ∗ is equivalent to rejecting for

Λ =
maxθ∈ω(L(θ))

maxθ∈Θ(L(θ))
(2)

Theorem 1.1 Assuming that the density/mass function is “smooth,” for

Λ =
maxθ∈ω(L(θ))

maxθ∈Θ(L(θ))
(3)

we have
−2 ln(Λ)

d−→ χ2
n−dim(θ0) (4)

This theorem is useful when the distribution of T (X) is unknown.
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In the following example, we can use a likelihood ratio test without approximation be-
cause the distribution of the test statistic is known.

Example 1.1 Let X
iid∼ B (100, p). Test the hypotheses

H0 : p = 0.5 versus H1 : p > 0.5

Now

L0(p) =

(
n

x

)(
1

2

)x(
1− 1

2

)n−x
(5)

=

(
n

x

)(
1

2

)n
(6)

and

L1(p) =

(
n

x

)
(p)x (1− p)n−x (7)

so that

l1(p) = ln

(
n

x

)
+ x ln(p) + (n− x) ln(1− p) (8)

(9)

and

l̇1(p) =
x

p
− n− x

1− p
(10)

x

p̂
=

n− x
1− p̂

(11)

x− p̂x = np̂− p̂x (12)

p̂ =
x

n
(13)

We can now compute

Λ =
max(L0(θ))

max(L1(θ))
(14)

=

(
n
x

) (
1
2

)n(
n
x

) (
x
n

)x (
1− x

n

)n−x (15)

=
1

2n
(
x
n

)x (
1− x

n

)n−x (16)

Note that Λ is small for X
n

or X “large.” So, we choose kα such that P(X ≥ kα|p = 0.5) = α.
A little work in R can help here.
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> x = 0:100

> plot(x,1/(2^100*(x/100)^100*(1-x/100)^(100-x)), type="l")

> qbinom(c(0.9,0.95,0.99), 100, 0.5)

56 58 62

> cbind(55:63, pbinom(55:63,100,0.05))

56 .9033

58 .9557

62 .9940

The following example shows how we can use approximate likelihood ratio tests when
the distribution of the test statistic is unknown. The example is the basis for testing for the
Poisson distribution of pottery sherds on top of Tel el-Farah South in Israel.

Example 1.2 If we assume that pottery sherds reach the surface of the tel in a random
fashion, and that the arrival of each sherd is Bernoulli, then the number of sherds per unit
circle should be Poisson. We can now determine if the distribution of sherds is constant
across the top of the tel.

Consider testing the hypotheses

H0 : X1, X2, . . . , Xn
iid∼ Poisson(λ)

versus

H1 : X1, X2, . . . , Xn
ind∼ Poisson(λi) for i = 1, 2, . . . , n

Under H0 we have

L(λ) =
n∏
i=1

λxie−λ

xi!
(17)

=
λ
∑
xie−nλ∏
(xi!)

(18)

so that
l(λ) =

∑
xi ln(λ)− nλ−

∑
ln(xi!) (19)

and

l̇(λ) =

∑
xi
λ
− n (20)∑

xi

λ̂
= n (21)

λ̂ = X (22)
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Under H1 we find that

L(λ) =
n∏
i=1

λxii e
−λi

xi!
(23)

=
(
∏
λxii ) e−

∑
λi∏

(xi!)
(24)

so that
l(λ) =

∑
xi ln(λi)−

∑
λi −

∑
ln(xi!) (25)

Partial derivatives lead to

λ̃i = xi (26)

We now compute Λ using the maximum likelihood results for both the numerator and
denominator.

Λ =

∏n
i=1

(
λ̂xie−λ̂/(xi!)

)
∏n

i=1

(
λ̃i
xi
e−λ̃i/ (xi!)

) (27)

=
∏(

x

xi

)xi
exi−x (28)

The distribution of this statistic is unknown so we turn to asymptotics.

−2 ln(Λ) = −2
∑[

Xi ln

(
X

Xi

)
+ (Xi −X)

]
(29)

= 2
∑

Xi ln

(
Xi

X

)
+
∑

Xi − nX (30)

= 2
∑

Xi ln

(
Xi

X

)
(31)

·∼ χ2
n−1 (32)

A Taylor approximation is

−2 ln(Λ) =
1

X

∑(
Xi −X

)2
(33)

= (n− 1)
s2

X
(34)

·∼ χ2
n−1 (35)
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